Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.

Identifieur interne : 001A22 ( Main/Exploration ); précédent : 001A21; suivant : 001A23

A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.

Auteurs : Pallinti Purushotham [États-Unis] ; Sung Hyun Cho [États-Unis] ; Sara M. Díaz-Moreno [Suède] ; Manish Kumar [États-Unis] ; B Tracy Nixon [États-Unis] ; Vincent Bulone [Australie] ; Jochen Zimmer [États-Unis]

Source :

RBID : pubmed:27647898

Descripteurs français

English descriptors

Abstract

Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.

DOI: 10.1073/pnas.1606210113
PubMed: 27647898
PubMed Central: PMC5056052


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.</title>
<author>
<name sortKey="Purushotham, Pallinti" sort="Purushotham, Pallinti" uniqKey="Purushotham P" first="Pallinti" last="Purushotham">Pallinti Purushotham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cho, Sung Hyun" sort="Cho, Sung Hyun" uniqKey="Cho S" first="Sung Hyun" last="Cho">Sung Hyun Cho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Diaz Moreno, Sara M" sort="Diaz Moreno, Sara M" uniqKey="Diaz Moreno S" first="Sara M" last="Díaz-Moreno">Sara M. Díaz-Moreno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691</wicri:regionArea>
<wicri:noRegion>SE-10691</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nixon, B Tracy" sort="Nixon, B Tracy" uniqKey="Nixon B" first="B Tracy" last="Nixon">B Tracy Nixon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bulone, Vincent" sort="Bulone, Vincent" uniqKey="Bulone V" first="Vincent" last="Bulone">Vincent Bulone</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden; Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden; Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064</wicri:regionArea>
<wicri:noRegion>5064</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zimmer, Jochen" sort="Zimmer, Jochen" uniqKey="Zimmer J" first="Jochen" last="Zimmer">Jochen Zimmer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908; jochen_zimmer@virginia.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville</wicri:regionArea>
<wicri:noRegion>Charlottesville</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27647898</idno>
<idno type="pmid">27647898</idno>
<idno type="doi">10.1073/pnas.1606210113</idno>
<idno type="pmc">PMC5056052</idno>
<idno type="wicri:Area/Main/Corpus">001623</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001623</idno>
<idno type="wicri:Area/Main/Curation">001623</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001623</idno>
<idno type="wicri:Area/Main/Exploration">001623</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.</title>
<author>
<name sortKey="Purushotham, Pallinti" sort="Purushotham, Pallinti" uniqKey="Purushotham P" first="Pallinti" last="Purushotham">Pallinti Purushotham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cho, Sung Hyun" sort="Cho, Sung Hyun" uniqKey="Cho S" first="Sung Hyun" last="Cho">Sung Hyun Cho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Diaz Moreno, Sara M" sort="Diaz Moreno, Sara M" uniqKey="Diaz Moreno S" first="Sara M" last="Díaz-Moreno">Sara M. Díaz-Moreno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691</wicri:regionArea>
<wicri:noRegion>SE-10691</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nixon, B Tracy" sort="Nixon, B Tracy" uniqKey="Nixon B" first="B Tracy" last="Nixon">B Tracy Nixon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bulone, Vincent" sort="Bulone, Vincent" uniqKey="Bulone V" first="Vincent" last="Bulone">Vincent Bulone</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden; Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden; Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064</wicri:regionArea>
<wicri:noRegion>5064</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zimmer, Jochen" sort="Zimmer, Jochen" uniqKey="Zimmer J" first="Jochen" last="Zimmer">Jochen Zimmer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908; jochen_zimmer@virginia.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville</wicri:regionArea>
<wicri:noRegion>Charlottesville</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Biocatalysis (MeSH)</term>
<term>Cellulase (metabolism)</term>
<term>Cellulose (biosynthesis)</term>
<term>Cellulose (ultrastructure)</term>
<term>Cytosol (metabolism)</term>
<term>Glucosyltransferases (chemistry)</term>
<term>Glucosyltransferases (isolation & purification)</term>
<term>Glucosyltransferases (metabolism)</term>
<term>Glycosides (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Isoenzymes (chemistry)</term>
<term>Isoenzymes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Lipids (chemistry)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Microfibrils (metabolism)</term>
<term>Microfibrils (ultrastructure)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (isolation & purification)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Protein Domains (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Cellulase (métabolisme)</term>
<term>Cellulose (biosynthèse)</term>
<term>Cellulose (ultrastructure)</term>
<term>Cinétique (MeSH)</term>
<term>Cytosol (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glucosyltransferases (composition chimique)</term>
<term>Glucosyltransferases (isolement et purification)</term>
<term>Glucosyltransferases (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Hétérosides (métabolisme)</term>
<term>Isoenzymes (composition chimique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Lipides (composition chimique)</term>
<term>Microfibrilles (métabolisme)</term>
<term>Microfibrilles (ultrastructure)</term>
<term>Populus (enzymologie)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (isolement et purification)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Isoenzymes</term>
<term>Lipids</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulase</term>
<term>Glucosyltransferases</term>
<term>Glycosides</term>
<term>Isoenzymes</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Isoenzymes</term>
<term>Lipides</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Microfibrils</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulase</term>
<term>Cytosol</term>
<term>Glucosyltransferases</term>
<term>Hétérosides</term>
<term>Isoenzymes</term>
<term>Microfibrilles</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Microfibrils</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Biocatalysis</term>
<term>Hydrolysis</term>
<term>Kinetics</term>
<term>Mass Spectrometry</term>
<term>Protein Domains</term>
<term>Sequence Alignment</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Biocatalyse</term>
<term>Cellulose</term>
<term>Cinétique</term>
<term>Domaines protéiques</term>
<term>Facteurs temps</term>
<term>Hydrolyse</term>
<term>Microfibrilles</term>
<term>Spectrométrie de masse</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27647898</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>01</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2016</Year>
<Month>10</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.</ArticleTitle>
<Pagination>
<MedlinePgn>11360-11365</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Purushotham</LastName>
<ForeName>Pallinti</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Sung Hyun</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Díaz-Moreno</LastName>
<ForeName>Sara M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Manish</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nixon</LastName>
<ForeName>B Tracy</ForeName>
<Initials>BT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bulone</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Division of Glycoscience, Royal Institute of Technology, Stockholm, SE-10691, Sweden; Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zimmer</LastName>
<ForeName>Jochen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908; jochen_zimmer@virginia.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006027">Glycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006027" MajorTopicYN="N">Glycosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020894" MajorTopicYN="N">Microfibrils</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">biopolymer</Keyword>
<Keyword MajorTopicYN="Y">cellulose</Keyword>
<Keyword MajorTopicYN="Y">glycosyltransferase</Keyword>
<Keyword MajorTopicYN="Y">membrane transport</Keyword>
<Keyword MajorTopicYN="Y">plant cell wall</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27647898</ArticleId>
<ArticleId IdType="pii">1606210113</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1606210113</ArticleId>
<ArticleId IdType="pmc">PMC5056052</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25490917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(4):1076-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7860586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Sep;7(9):1634-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22899332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Jul 20;43(28):9234-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15248781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 27;6:28696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27345599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):36931-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12145282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Dec;163(4):1558-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24154621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2015 Oct;34:78-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):145-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23592721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1980 Feb;84(2):327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7189756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23175754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 10;493(7431):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Feb;19(2):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:69-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2015 Jun 4;119(22):6525-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25942604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jul 19;3:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22833752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Feb;52(2):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jan;170(1):123-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26556795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):E1195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1983 Nov;159(4):347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24258233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jul;1838(7):1889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24680652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Oct 1;431(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20681948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2014 May;21(5):489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jun 19;165(4):1521-1532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24948829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 17;531(7594):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26958837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Dec 10;259(23):14966-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6238967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Dec;166(4):1709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Dec;163(4):1485-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24296786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Nov;11(11):2075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1969 Dec;32(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5361396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Sep 1;470(2):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:521-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18518825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W465-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24127606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jan 4;295(5552):147-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11778054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2015;84:895-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26034894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Suède</li>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Purushotham, Pallinti" sort="Purushotham, Pallinti" uniqKey="Purushotham P" first="Pallinti" last="Purushotham">Pallinti Purushotham</name>
</region>
<name sortKey="Cho, Sung Hyun" sort="Cho, Sung Hyun" uniqKey="Cho S" first="Sung Hyun" last="Cho">Sung Hyun Cho</name>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<name sortKey="Nixon, B Tracy" sort="Nixon, B Tracy" uniqKey="Nixon B" first="B Tracy" last="Nixon">B Tracy Nixon</name>
<name sortKey="Zimmer, Jochen" sort="Zimmer, Jochen" uniqKey="Zimmer J" first="Jochen" last="Zimmer">Jochen Zimmer</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Diaz Moreno, Sara M" sort="Diaz Moreno, Sara M" uniqKey="Diaz Moreno S" first="Sara M" last="Díaz-Moreno">Sara M. Díaz-Moreno</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Bulone, Vincent" sort="Bulone, Vincent" uniqKey="Bulone V" first="Vincent" last="Bulone">Vincent Bulone</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27647898
   |texte=   A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27647898" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020